

List of Experiments:

S.No. Name of Experiment CO PO PSO

1 Implement binary search using Divide and

Conquer approach.

CO1 PO3,PO5 PSO1,

PSO2

2 Implement Merge Sort using Divide and

Conquer approach.

CO1 PO1,PO5 PSO1,

PSO2

3 Implement Quick Sort using Divide and

Conquer approach.

CO3 PO1,PO5 PSO1,

PSO2

4 Find Maximum and Minimum element from an

array of integer using Divide and Conquer

Approach.

CO2 PO1,PO5 PSO1,

PSO2

5 Find the minimum number of scalar

multiplication needed for chain of matrix.

CO3 PO1,PO5 PSO1

6 Implement all pair of Shortest path for a graph

(Floyed- Warshall Algorithm).

CO3 PO1,PO5 PSO1

7 Implement Traveling Salesman Problem. CO3 PO1,PO5 PSO1

8 Implement Single Source shortest Path for a

graph using (Dijkstra /Bellman Ford Algorithm).

CO3 PO1,PO3,

PO5

PSO1

9 Implement 15 Puzzle Problem. CO4 PO1,PO3,

PO5

PSO1,

PSO2

10 Implement 8 Queen problem. CO4 PO1,PO3,

PO5

PSO1

11 Implement backtracking method in Graph

Coloring Problem

CO4 PO1,PO5 PSO1

12 Implement greedy method in Knapsack

Problem.

CO5 PO1,PO5 PSO1,PSO2

B.P. Poddar Institute of Management and Technology

Department of Information Technology

Academic Year: 2018-2019 [Odd Semester]

13 Implement greedy method in Job sequencing

with deadlines.

CO5 PO1,PO5 PSO1

14 Implement greedy method to find Minimum

Cost Spanning Tree by applying Prim's

Algorithm.

CO5 PO1,PO5 PSO1,PSO2

15 Implement greedy method to find Minimum

Cost Spanning Tree by applying Kruskal's

Algorithm.

CO5 PO1,PO5 PSO1,PSO2

16 Implement graph traversal algorithm by

applying Breadth First Search (BFS).

CO5 PO1,PO5 PSO1

17 Implement graph traversal algorithm by

applying Depth First Search (DFS)

CO5 PO1,PO5 PSO1

18 Case study: 1. Perrin Number problem:

p(0)=3,p(1)=0,p(2)=2,p(n)=p(n 2)+p(n-3),

Illustrate time and space trade-off.

Design/State at least three algorithms to study

the timing and complexity analysis for that

problem.

Case Study: 2 Design algorithms for integer

multiplication which multiplies n-bit numbers by

recursively multiplying n/ 2 bit numbers.

Calculate the time complexity o your algorithm.

Execute the Program in C. Can you propose

any optimization technique for this problem.

Case Study: 3 You are given an infinite array

A[·] in which the first n cells contain integers in

sorted order and the rest of the cells are filled

with ∞. You are not given the value of n.

Describe an algorithm that takes an integer x

as input and finds a position in the array

containing x, if such a position exists, in O(log

n) time. Execute the Program in C.

Case Study: 4 There are 3 (non-decreasing)

sorted arrays, namely A, B and C. Define a

triplet (a, b, c) such that a is in A, b is in B and c

is in C. Also, define dist (a, b, c) = max (|a-b|,

|b-c|, |c-a|). Now find the triplet (a_min, b_min,

 PO1,PO3,

PO5

PSO1,PSO2

c_min) from A, B and C such that dist (a_min,

b_min, c_min) is minimum among all possible

triplets. Can you propose an algorithm which

will takes O (n(A)+n(B)+n(C)). Execute the

Program in C.

Case Study: 5 You have n = 2^k coins and a

pan balance. One of these coins is counterfeit

and is lighter (in weight) than the rest. Design a

divide-and-conquer algorithm to find the

counterfeit coin. You may put any number of

coins in each pan of the balance, and, it tells

you which side is heavier. Analyze your

algorithm. Execute the Program in C.

Case Study: 6 Generate the power of even

number, for example 128, How many minimum

numbers of multiplications you needed. Design

the algorithm. Calculate the time complexity.

Case Study: 7 You are given an array of n

elements, and you notice that some of the

elements are duplicates; that is, they appear

more than once in the array. Show how to

remove all duplicates from the array in time

O(n log n).

