

List of Experiments:

S.No.	Name of Experiment	СО	PO	PSO
1	Implement binary search using Divide and Conquer approach.	CO1	PO3,PO5	PSO1, PSO2
2	Implement Merge Sort using Divide and Conquer approach.	CO1	PO1,PO5	PSO1, PSO2
3	Implement Quick Sort using Divide and Conquer approach.	CO3	PO1,PO5	PSO1, PSO2
4	Find Maximum and Minimum element from an array of integer using Divide and Conquer Approach.	CO2	PO1,PO5	PSO1, PSO2
5	Find the minimum number of scalar multiplication needed for chain of matrix.	CO3	PO1,PO5	PSO1
6	Implement all pair of Shortest path for a graph (Floyed- Warshall Algorithm).	CO3	PO1,PO5	PSO1
7	Implement Traveling Salesman Problem.	CO3	PO1,PO5	PSO1
8	Implement Single Source shortest Path for a graph using (Dijkstra /Bellman Ford Algorithm).	CO3	PO1,PO3, PO5	PSO1
9	Implement 15 Puzzle Problem.	CO4	PO1,PO3, PO5	PSO1, PSO2
10	Implement 8 Queen problem.	CO4	PO1,PO3, PO5	PSO1
11	Implement backtracking method in Graph Coloring Problem	CO4	PO1,PO5	PSO1
12	Implement greedy method in Knapsack Problem.	CO5	PO1,PO5	PSO1,PSO2

13	Implement greedy method in Job sequencing with deadlines.	CO5	PO1,PO5	PSO1
14	Implement greedy method to find Minimum Cost Spanning Tree by applying Prim's Algorithm.	CO5	PO1,PO5	PSO1,PSO2
15	Implement greedy method to find Minimum Cost Spanning Tree by applying Kruskal's Algorithm.	CO5	PO1,PO5	PSO1,PSO2
16	Implement graph traversal algorithm by applying Breadth First Search (BFS).	CO5	PO1,PO5	PSO1
17	Implement graph traversal algorithm by applying Depth First Search (DFS)	CO5	PO1,PO5	PSO1
18	Case study: 1. Perrin Number problem: p(0)=3,p(1)=0,p(2)=2,p(n)=p(n 2)+p(n-3), Illustrate time and space trade-off. Design/State at least three algorithms to study the timing and complexity analysis for that problem. Case Study: 2 Design algorithms for integer multiplication which multiplies n-bit numbers by recursively multiplying n/ 2 bit numbers. Calculate the time complexity o your algorithm. Execute the Program in C. Can you propose any optimization technique for this problem. Case Study: 3 You are given an infinite array A[·] in which the first n cells contain integers in sorted order and the rest of the cells are filled with ∞ . You are not given the value of n. Describe an algorithm that takes an integer x as input and finds a position in the array containing x, if such a position exists, in O(log n) time. Execute the Program in C. Case Study: 4 There are 3 (non-decreasing) sorted arrays, namely A, B and C. Define a triplet (a, b, c) such that a is in A, b is in B and c is in C. Also, define dist (a, b, c) = max (a-b , lb-cl. c-al). Now find the triplet (a min b min		P01,P03, P05	PSO1,PSO2

c_min) from A, B and C such that dist (a_min, b_min, c_min) is minimum among all possible triplets. Can you propose an algorithm which will takes O (n(A)+n(B)+n(C)). Execute the Program in C.		
Case Study: 5 You have n = 2 ^k coins and a pan balance. One of these coins is counterfeit and is lighter (in weight) than the rest. Design a divide-and-conquer algorithm to find the counterfeit coin. You may put any number of coins in each pan of the balance, and, it tells you which side is heavier. Analyze your algorithm. Execute the Program in C.		
Case Study: 6 Generate the power of even number, for example 128, How many minimum numbers of multiplications you needed. Design the algorithm. Calculate the time complexity.		
Case Study: 7 You are given an array of n elements, and you notice that some of the elements are duplicates; that is, they appear more than once in the array. Show how to remove all duplicates from the array in time O(n log n).		