B. P. Poddar Institute of Management \& Technology Department of Electronics \& Communication Engineering Academic Year: 2017-18 Semester: Even

Laboratory Name Maxwell Laboratory Room No.: B602 $2^{\text {nd }}$ Year ECE $2^{\text {nd }}$ semester
 Course Name: EM Theory \& Transmission Lines (EC 491)
 List of Experiments to be conducted

Expt. No.	Name of Experiment	$\mathbf{C O}$	PO	PSO
1	Familiarization with various types of RF and microwave components, measuring instruments and various types of antennas	1	$1,7,8,9,10,12$	1,2
2	Plotting of standing wave pattern and measurement of voltage standing wave ratio (VSWR) in a microwave test bench for various types of load	2	$1,2,3,5,6,7,8,9,10,12$	1,2
3	Determination of reflection co-efficient and voltage standing wave ratio (VSWR) of a coaxial line for various load conditions using time domain and frequency domain techniques.	3	$1,2,3,5,6,7,8,9,10,12$	1,2
4	Determination of Input impedance of a terminated waveguide using shift in minima technique	2	$1,2,3,5,6,7,8,9,10,12$	1,2
5	Study of Smith chart on Matlab platform	4	$1,2,3,5,6,7,8,9,10,12$	1,2
6	Study of radiation pattern of a dipole antenna	5	$1,2,3,5,6,7,8,9,10,12$	1,2
7	Study of radiation pattern of a folded dipole antenna	5	$1,2,3,5,6,7,8,9,10,12$	1,2
8	Study of radiation pattern of a 3-element Yagi-Uda antenna	5	$1,2,3,5,6,7,8,9,10,12$	1,2
9	Study of radiation pattern of a pyramidal horn antenna	6	$1,2,3,5,6,7,8,9,10,12$	1,2
10	Measurement of gain and bandwidth of a pyramidal horn antenna	$1,2,3,5,6,7,8,9,10,12$	1,2	
11	Additional Experiments	NA	$1,2,3,5,6,7,8,9,10,12$	1,2
$11 . a$	Measurement of Coupling, Isolation, Directivity of Directional Coupler.	NA	$1,2,3,5,6,7,, 8,9,10,12$	1,2
$11 . b$	Determination of attenuation constant of a coaxial line for various load condition using frequency domain technique.	NA		

