3. P. PODDAR INSTITUTE OF MANAGEMENT \& TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE \& ENGINEERING RICHARD STALMAN LAB (C-102)
 ACADEMIC YEAR: 2018-2019 [ODD SEMESTER]
 LIST OF EXPERIMENTS

Course: Artificial Intelligence Lab
Code: CS793C
Branch: CSE

TOPIC	LIST OF EXPERIMENTS	CO	$\begin{gathered} \hline \mathbf{P O} / \mathbf{P} \\ \text { SO } \end{gathered}$
Family tree related problems	E1. Clauses: parent(tom,bob). parent(pam,bob). parent(tom,liz). parent(bob,ann). parent(bob,pat). parent(pat,jim). male(tom). male(jim). male(bob). female(liz). female(pat). female(ann). $\operatorname{offspring}(\mathrm{Y}, \mathrm{X}):-$ $\operatorname{parent}(\mathrm{X}, \mathrm{Y})$. $\operatorname{mother}(\mathrm{X}, \mathrm{Y}):-$ $\operatorname{parent}(\mathrm{X}, \mathrm{Y})$, female (X). $\operatorname{grandparent}(\mathrm{X}, \mathrm{Y}):-$ $\operatorname{parent}(\mathrm{X}, \mathrm{Z}), \operatorname{parent}(\mathrm{Z}, \mathrm{Y})$. $\operatorname{sister}(\mathrm{X}, \mathrm{Y}):-$ $\operatorname{parent}(\mathrm{Z}, \mathrm{X}), \operatorname{parent}(\mathrm{Z}, \mathrm{Y})$, $\operatorname{female}(\mathrm{X}), \operatorname{not}(\mathrm{X}=\mathrm{Y})$. $\operatorname{haschild}(\mathrm{X}):-$ $\operatorname{parent}(\mathrm{X}, \mathrm{Y})$. With reference to the above clauses answer the following queries: - Who is the grandmother of ann? - Who are the grand children of bob? - Who is jim's aunt? - Who is the brother of liz? - Name the parents in the family tree except ann's parents. - Who is jim's great grandfather? - Define the relation hastwochild and find out the parents who have two children. - Define a relation uncle and find out the name of persons who have uncles. - Define a recursive predecessor relation. - Find out the predecessors of jim. E2. Solve the following problem using Prolog using the family tree diagram given below: Consider ritu, mita, amita, sonia, dipti are female and rest all are male. Write appropriate clauses and goals to answer the following queries: - Who is the grandmother of sudip? - Who is the grandson of mita?	C01	PO1, PO2, PO3, PO4, PO8, PO9, PO10 PSO1, PSO2

	- Who is the grandfather of dipti? - Who is the aunt of amita?		
Problems on List: delete, find, even/odd numbered elements, shift	E3. Write a goal to delete the first three elements and the last three elements from a list L producing list L 1 . E4. Write a goal, using conc to delete the last three elements from a list L producing another list L 2 . (Hint: L is the concatenation of L2 and three element list). E5. Define the relation: last(Item,List) so that Item is the last element of a list List. Write two versions: (a) using the conc relation. (b) without conc. E6. Define two predicates: evenlength(List) and oddlength(List), so that they are true if their argument is a list of even or odd length respectively. For example, the list $[a, b, c, d]$ is 'evenlength' and [a,b,c] is 'oddlength'. E7. Define the relation shift(List1,List2) so that List2 is List1 "shifted rotationally" by one element to the left. For example, ?_shift([1,2,3,4,5],L1) produces: $\mathrm{L} 1=[2,3,4,5,1]$	C02	PO1, PO2, PO3, PO4, PO8, PO9, PO10 \& PSO1, PSO2
Problems on List: reverse,	E8. Define the relation:	C02	$\begin{aligned} & \mathrm{PO} 1, \\ & \mathrm{PO} 2, \end{aligned}$

palindrome, translate, subset	reverse(List, ReversedList) that reverses lists. For example, reverse([a,b,c,d] is [d,c,b,a]). E9. Define the predicate palindrome(List) (a) Using reverse relation. (b) Not using reverse relation. E10. Define the relation translate(List1,List2) to translate a list of numbers between 0 and 9 to a list of the corresponding words. For example, ?_translate([3,5,1,3],X) produces: $\mathrm{X}=[$ three,five, one,three]. Use the following as an auxiliary relation: means(0,zero). means(1,one)......means(9,nine). E11. Define the relation subset(Set,Subset), where Set and Subset are two lists representing two sets and such that Subset is the subset of Set. Use it to check for subset relation as well as generate all possible subsets from a given set.		$\begin{gathered} \hline \text { PO3, } \\ \text { PO4, } \\ \text { PO8, } \\ \text { PO9, } \\ \text { PO10 } \\ \& \\ \text { PSO1, } \\ \text { PSO2 } \end{gathered}$
Problems on List: divide list, generate integers within a range, sum of subset	E12. Define the relation dividelist(List,List1,List2) so that the elements of List are partitioned between List1 and List2, and List1 and List2 are of approximately the same length. For example, dividelist([a,b,c,d,e],[a,c,e],[b,d]). dividelist([p,q,r,s],[p,r],[q,s]). E13. Define the predicate subsum(Set, Sum, Subset) so that Set is a list of numbers, Subset is a subset of these numbers, and the sum of the numbers in Subset is Sum. For example, ?- subsum([1,2,3,4,5], 5, Sub). Sub $=[1,2,2]$; Sub $=[2,3]$; Sub $=[5]$; E14. Define the procedure between($\mathbf{N 1 , N 2 , X)}$ which, for two given integers N1 and N2, generates integers X that satisfy the constraint $\mathrm{N} 1 \leq \mathrm{X} \leq \mathrm{N} 2$.	C02	PO1, PO2, PO3, PO4, PO8, PO9, PO10 \& PSO1, PSO2
Recursive Problems - Factorial, GCD, Fibonacci series, Tower of Hanoi	E15. Write a prolog program to find out the factorial of a given number. E16. Write a prolog program to find out the $\boldsymbol{G C D}$ of two numbers.	CO3	$\begin{aligned} & \hline \text { PO1, } \\ & \text { PO2, } \\ & \text { PO3, } \\ & \text { PO4, } \\ & \text { PO8, } \\ & \text { PO9, } \end{aligned}$

	E17. Write a prolog program to find out the n-th term of the Fibonacci series. E18. Write a prolog program to implement the Towers of Hanoi problem: Move n disks from pin ' a ' to p in ' b ' using pin ' c '.		$\begin{gathered} \text { PO10 } \\ \& \\ \text { PSO1, } \\ \text { PSO2 } \end{gathered}$
Implement different sorting techniques	E19. Write a prolog program to implement Bubble sort. E20. Write a prolog program to implement Insertion sort.	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2 \end{aligned}$	$\begin{gathered} \hline \mathrm{PO} 1, \\ \mathrm{PO} 2, \\ \mathrm{PO} 3, \\ \mathrm{PO} 4, \\ \mathrm{PO}, \\ \mathrm{PO} 9, \\ \mathrm{PO} 10 \\ \& \\ \text { PSO1, } \\ \text { PSO2 } \end{gathered}$
Implement Divide \& Conquer type sorting techniques	E21. Write a prolog program to implement Quick sort. E22. Write a prolog program to merge two sorted lists producing a third list. For example, $?-\operatorname{merge}([2,5,6,6,8],[1,3,5,9], \mathrm{L}) \text {. }$ $\mathrm{L}=[1,2,3,5,5,6,6,8,9]$	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2 \end{aligned}$	$\begin{gathered} \text { PO1, } \\ \text { PO2, } \\ \text { PO3, } \\ \text { PO4, } \\ \text { PO8, } \\ \text { PO9, } \\ \text { PO10 } \\ \& \\ \text { PSO1, } \\ \text { PSO2 } \end{gathered}$
Implement Blind Search Techniques	E23. Write a prolog program to implement Depth First Search. E24. Write a prolog program to implement Breadth First Search.	CO4	$\begin{gathered} \text { PO1, } \\ \text { PO2, } \\ \text { PO3, } \\ \text { PO4, } \\ \text { PO8, } \\ \text { PO9, } \\ \text { PO10 } \\ \& \\ \text { PSO1, } \\ \text { PSO2 } \end{gathered}$
Implement Hill Climbing algorithm	E25. Write a program to solve 8-Puzzle problems using Hill climbing algorithm.	CO5	PO1, PO2, PO3, PO4, PO8, PO9, PO10 PSO1,

			PSO2
	E26.		PO1,
	Write a program to solve 8-Puzzle problems using A*		PO2,
	algorithm.		PO3,
Implement A*		PO4,	
algorithm			CO5
			PO8,
			PO1,
		$\&$	
			PSO1,
			PSO2

